Intel Pohoiki Springs: un sistema neuromorfico a 100 milioni di neuroni
Intel ha annunciato la disponibilità di Pohoiki Springs, il suo più recente e più potente sistema neuromorfico di ricerca che fornisce la capacità computazionale di 100 milioni di neuroni. Il sistema basato su cloud sarà reso disponibile ai membri della Intel Neuromorphic Research Community (INRC), ampliando il loro lavoro nel settore neuromorfico per risolvere problemi più grandi e più complessi.
“Pohoiki Springs incrementa di oltre 750 volte il nostro chip neuromorfico per la ricerca, Loihi, funzionando a un livello di potenza inferiore a 500 watt. Il sistema consente ai nostri partner di ricerca di esplorare diversi modi di accelerare i carichi di lavoro che attualmente vengono eseguiti lentamente con le architetture convenzionali, fra cui i sistemi di High-Performance Computing (HPC)” spiega Mike Davies, Direttore del Neuromorphic Computing Lab di Intel
Pohoiki Springs è un sistema montato su rack per data center ed è il più grande sistema di calcolo neuromorfico di Intel finora sviluppato. Integra 768 chip neuromorfici da ricerca Loihi all’interno di uno chassis delle dimensioni di cinque server standard.
I processori Loihi si ispirano al cervello umano. Come il cervello, Loihi è in grado di elaborare determinati processi impegnativi fino a 1.000 volte più velocemente e in maniera 10.000 volte più efficiente rispetto ai processori convenzionali. Pohoiki Springs rappresenta il passo successivo per ampliare l’utilizzo di questo tipo di architettura per valutarne il potenziale non solo per risolvere i problemi di intelligenza artificiale, ma per una vasta gamma di problemi difficili dal punto di vista computazionale. I ricercatori di Intel ritengono che il parallelismo estremo e il segnale asincrono dei sistemi neuromorfici siano in grado di fornire decisivi miglioramenti delle prestazioni con consumi notevolmente ridotti rispetto ai computer convenzionali più avanzati oggi disponibili.
Il più piccolo sistema neuromorfico di Intel, Kapoho Bay, comprende due chip Loihi con 262.000 neuroni e supporta una varietà di carichi di lavoro in edge in tempo reale. I ricercatori di Intel e INRC hanno dimostrato la capacità di Loihi di riconoscere i gesti in tempo reale, leggere il Braille usando una nuova pelle artificiale, orientare la direzione utilizzando punti di riferimento visivi appresi e imparare nuovi schemi olfattivi, il tutto consumando poche decine di milliwatt di potenza. Questi esempi su piccola scala hanno finora dimostrato un’eccellente scalabilità, elaborando in modo più veloce ed efficiente problemi più grandi impiegando Loihi rispetto a soluzioni convenzionali. Ciò rispecchia la scalabilità del cervello presente in natura, dagli insetti al cervello umano.
Con 100 milioni di neuroni, Pohoiki Springs aumenta la capacità neurale di Loihi alle dimensioni di un cervello di un piccolo mammifero, un importante passo avanti nel percorso verso il supporto di carichi di lavoro neuromorfici molto più grandi e sofisticati. Il sistema pone le basi per un futuro autonomo e connesso, che richiederà nuovi approcci all’elaborazione dinamica dei dati in tempo reale.
I sistemi neuromorfici di Intel sono ancora in fase di ricerca e non sono concepiti per sostituire i sistemi di elaborazione convenzionali. Offrono ai ricercatori uno strumento per sviluppare e caratterizzare nuovi algoritmi ispirati al cervello per l’elaborazione in tempo reale, la risoluzione dei problemi, l’adattamento e l’apprendimento.
Esempi di algoritmi promettenti e altamente scalabili sviluppati per Loihi includono:
- Soddisfacimento di vincoli: I problemi di soddisfacimento di vincoli (Constraint Satisfaction Problems) sono presenti ovunque nel mondo reale, dal gioco del Sudoku alla programmazione delle linee aeree e alla pianificazione della consegna di pacchi. Richiedono la valutazione di un gran numero di potenziali soluzioni per identificarne una o alcune che soddisfano vincoli specifici. Loihi può accelerare tali problemi esplorando molte soluzioni diverse in parallelo e ad alta velocità.
- Ricerca di grafi e schemi ricorrenti: Ogni giorno le persone cercano strutture di dati basate su grafi per trovare percorsi ottimali e modelli che corrispondono accuratamente, ad esempio per ottenere indicazioni stradali o riconoscere i volti. Loihi ha dimostrato la capacità di identificare rapidamente i percorsi più brevi nei grafi e di eseguire ricerche approssimate di immagini.
- Problemi di ottimizzazione: Le architetture neuromorfiche possono essere programmate in modo tale che il loro comportamento dinamico nel tempo ottimizzi matematicamente degli obiettivi specifici. Questo comportamento può essere applicato per risolvere problemi di ottimizzazione del mondo reale, come massimizzare la larghezza di banda di un canale di comunicazione wireless o allocare un portafoglio azionario per ridurre al minimo il rischio con un determinato tasso di rendimento.
Il calcolo neuromorfico rappresenta un ripensamento completo dell’architettura dei computer dalle basi. L’obiettivo è di applicare le più recenti conoscenze della neuroscienza per creare chip che funzionino meno come computer tradizionali e più come il cervello umano. I sistemi neuromorfici replicano il modo in cui i neuroni sono organizzati, comunicano e apprendono a livello hardware. Intel ritiene che Loihi e i futuri processori neuromorfici siano in grado di definire un nuovo modello di elaborazione programmabile per soddisfare la crescente domanda mondiale di dispositivi diffusi e intelligenti.